

Spectroscopic analysis of a plasma for an astrophysical jet experiment Hannah V. Willett (University of Cambridge, UK) Mentors: Prof. Paul M. Bellan, Vernon H. Chaplin (California Institute of Technology, USA)

Introduction

Figure 1: Photograph of a plasma jet produced in the Caltech lab, courtesy of the Bellan Plasma Group

- Caltech jet experiment (Fig. 1) makes jets with speeds of 10-50 km s⁻¹ – astrophysical jets travel at least 10x faster
- Increasing jet speed will allow further research
- At present **neutral gas** is injected into the chamber and **broken down into plasma** by an electrical discharge
- Creating a 'seed' or **pre-ionised plasma** and injecting that into the chamber instead will result in a lower density, faster jet
- A **source has been built** to create the seed plasma using radio frequency (RF) power sources
- Need to **understand the behaviour of the** \bullet plasma source before it can be used in the main experiment

4	
	I
_	

Objective

 Obt that exp 	ain diagnostics for the plasma so t it can be used in the main eriment
_	Technique: spectroscopy
_	Analyse the light emitted from the plasma by looking at the relative strengths of known spectral lines
_	Observe neutral argon (Ar I) and singly ionised argon (Ar II) lines
_	Calculate the ionisation fraction and its response to changes in conditions in the plasma chamber
	Use a magnetic field to excite helicon waves – this should increase the energy transferred to the plasma and hence the ionisation fraction

Lines used: Ar I 696.5 nm; Ar II 434.8nm

Results cont.

• Have also:

- Investigated the background continuum radiation:
- Appears to be strongest in the 400-500nm region
- Very little in the region of the strong Ar I lines
- Tested and rejected the local thermodynamic equilibrium model for the plasma (see Table 1 section 6)

Conclusions

- Found the **set-up** that **makes the plasma most ionised** so far (using Figures 4-6)
- Introducing a magnetic field appears to excite helicon waves
- Figure 7 shows the amount of Ar II increasing with field strength
- Apparent 400-500nm background continuum is likely to be **broadened Ar II lines merging** together as their density is high in this region
- Will still take this into account when taking measurements

Further work

- Currently working on a **better model** for the plasma to calculate the ionisation fraction:
- **Coronal equilibrium** may apply to **ions**
- Collisional-radiative model should apply to atoms and ions
- Will take **more data** for **higher magnetic field** strengths to investigate presence of helicons
- Aim to have a working model and good estimates of the ionisation fraction for different plasma conditions

lodel	Electron density	Includes electron collisional processes?	Includes radiative processes?		
_ocal iodynamic uilibrium	High (greater than our estimated density)	✓ excitation/ionisation and de-excitation/ recombination	X		
lisional- diative	Applies to most densities (including our plasma)	✓ excitation/ionisation and de-excitation/ recombination	✓ de-excitation/ recombination only		
oronal uilibrium	Low (our value estimated to be on the borderline)	✓ excitation/ionisation only	✓ de-excitation/ recombination only		

Table 1: Overview of the features of the three plasma models under investigation. The model most likely to apply to this experiment is highlighted.